Neoadjuvant Treatment in Rectal Ca

Dr Yeh Chen Lee

Colorectal Ca

- * 3rd most common Ca in Australia
 - 1 in 12 would develop CRC by age 85
 - Incidence projected to increase w aging population
- * 2nd leading cause of Cancer death after Lung Ca
- * 40% of Colorectal Ca occurs in the Rectum
- * National Bowel Screening Program (2006)
 - * Limited one-off test for age 50,55, and 65

Stage information for Rectal Cancer

LIIIarue

Stage	т	N	м	Dukes ^c	MAC ^c
0	Tis	N0	M0		
I.	T1	N0	M0	A	A
	T2	N0	M0	A	B1
IIA	Т3	N0	M0	В	B2
IIB	T4a	N0	M0	В	B2
IIC	T4b	N0	M0	В	В3
IIIA	T1-T2	N1/N1c	M0	С	C1
	T1	N2a	M0	С	C1
IIIB	T3–T4a	N1/N1c	M0	С	C2
	T2-T3	N2a	M0	С	C1/C2
	T1-T2	N2b	M0	С	C1
IIIC	T4a	N2a	M0	С	C2
	T3–T4a	N2b	M0	С	C2
	T4b	N1-N2	M0	С	C3
IVA	Any T	Any N	M1a		
IVB	Any T	Any N	M1b		

Timeline progression

- * Surgical technique : TME
- * Imaging technique
 - * Stage migration
 - Better evaluation of localized disease
- * Movement to pre-op Therapy

Standard of Care

- * Stage 1 (T1-2 N0)
 - surgery alone
- * Stage 2-3 (T3-4 or Node positive):
 - * pre-op chemorad tx- surgery 4-6 mths postop chemo
- * Preop Imaging w MRI essential

S2& S3 Rectal Cancer

- * Neoadjuvant Chemoradtx
- * Surgery : TME
- * Adjuvant chemo

Issues:

- Benefit of Radtx in addition to TME?
- Chemoradtx before / after surgery?
- Radtx vs Chemoradtx?
- What Type of Chemotherapy?

Benefit of Radtx

Dutch Colorectal Cancer Group

- * 1861 Pt w rectal Ca, Ramdomized to :
 - * 25 Gy in 5# + TME
 - * TME alone

Kapitejin et al. N Engl J Med 2001

Dutch Colorectal Cancer Group

Figure 2. Rates of Local Recurrence in the Population of 1748 Eligible Patients Who Underwent Macroscopically Complete Local Resection, According to Treatment Group.

At two years, the rate of local recurrence was 2.4 percent in the group assigned to radiotherapy and surgery and 8.2 percent in the group assigned to surgery alone (P<0.001).

Kapitejin et al. N Engl J Med 2001

TABLE 4. Results of Univariate Log-Rank Analyses of Two-Year Rates of Local Recurrence among the 1748 Eligible Patients with a Macroscopically Complete Local Resection, According to Selected Prognostic Variables.*

VARIABLE	RADIOTHERAP	PY PLUS SURGERY	SURGE	RY ALONE	P VALUE
	NO. OF PATIENTS AT RISK	LOCAL RECURRENCE AT 2 YR	NO. OF PATIENTS AT RISK	LOCAL RECURRENCE AT 2 YR	
		%		%	
Overall	873	2.4	875	8.2	< 0.001
Sex		2.5		7.2	<0.001
Male Female	555 318	2.5	557 318	7.2 9.8	< 0.001 < 0.001
Distance of tumor from anal verge				2.00	~
10.1–15 cm	262	1.3	271	3.8	0.17
5.1–10 cm	372	1.0	350	10.1	< 0.001
≤5 cm	237	5.8	253	10.0	0.05
Type of resection					
Low anterior	577	1.2	603	7.3	< 0.001
Abdominoperineal	248	4.9	232	10.1	0.02
Hartmannt	47	2.2	20	10.7	0.18
TNM stage					
I	265	0.5	244	0.7	0.15
II	251	1.0	241	5.7	0.01
III	298	4.3	324	15.0	< 0.001
IV (distant metastases but complete local resection)	47	10.1	48	23.8	0.25

*Patients with missing data were excluded from the analysis of local recurrence. Twenty-eight patients without a tumor (TNM stage 0) were excluded from the multivariate analysis because they were not at risk for local recurrence. In a Cox proportional-hazards analysis of age (as a continuous variable), the hazard ratio for local recurrence at two years was 0.99 (95 percent confidence interval, 0.95 to 1.04; P=0.77) in the group of 873 patients assigned to radiotherapy and surgery and 1.01 (95 percent confidence interval, 0.99 to 1.04; P=0.21) in the group of 875 patients assigned to surgery alone. TNM denotes tumor–node–metastasis.

[†]A Hartmann resection is a low anterior resection without the construction of an anastomosis.

DCCG Study - Conclusions

 Pt w Stage 2 and 3 Rectal Ca would receive significant benefit from

pre-op Radiotherapy

- * However
 - * In patients with S2 disease with high rectal Ca?

Chemoradtx: Pre-op vs Post-op

Surgery + Postoperative 5-FU

823 patients with T3 or T4 rectal cancer Ultrasonography T3/4 or N+ < 16 cm anal verge Age < 75

50.4Gy in 28# 5FU 1g/m2 daily for 5 days, W1 & W5

Surgery 5-FU/radiotherapy + 5-FU

Table 3. Postoperative Pathological Tumor Stage, Type of Surger Actual Treatment Given.*	y, and Completeness of R	esection, According to
	Preoperative	Postoperative

Variable	Preoperative Chemoradiotherapy (N=415)	Postoperative Chemoradiotherapy (N=384)	P Value
Histopathological finding (%)			<0.001
Complete response	8	0	
TNM stage			
I. I.	25	18	
II	29	29	
III	25	40	
IV	6	7	
Unknown	6	6	

GRT-results

Figure 2. Cumulative Incidence of Local Recurrences (Panel A) and Distant Recurrences (Panel B) among the 799 Patients Randomly Assigned to Preoperative or Postoperative Chemoradiotherapy, According to an Intentionto-Treat Analysis.

Follow-up data were available for 781 patients.

GRT-results

 Table 4. Rates of Sphincter-Sparing Surgery in 194 Patients Determined by the Surgeon before Randomization

 to Require Abdominoperineal Resection, According to Actual Treatment Given.

Variable	Preoperative Chemoradiotherapy (N=415)	Postoperative Chemoradiotherapy (N=384)	P Value
Abdominoperineal resection deemed necessary — no. (%)	116 (28)	78 (20)	
Sphincter-preserving surgery performed — no./total no. (%)	45/116 (39)	15/78 (19)	0.004

Type of Toxic Effect	Preoperative Chemoradiotherapy (N=399)	Postoperative Chemoradiotherapy (N=237)	P Value
	% of patients		
Acute			
Diarrhea	12	18	0.04
Hematologic effects	6	8	0.27
Dermatologic effects	11	15	0.09
Any grade 3 or 4 toxic effect	27	40	0.001
Long-term			
Gastrointestinal effects†	9	15	0.07
Strictures at anastomotic site	4	12	0.003
Bladder problems	2	4	0.21
Any grade 3 or 4 toxic effect	14	24	0.01

* All patients who received any preoperative or postoperative radiotherapy according to protocol were included in this analysis. Some patients had more than one toxic effect.

† The gastrointestinal effects were chronic diarrhea and small-bowel obstruction. The incidence of small-bowel obstruction requiring reoperation was 2 percent in the preoperative-treatment group and 1 percent in the postoperative-treatment group (P=0.70).
Sauer et al. N Engl J Med 2004

German Rectal Trial - conclusions

	PRE-op Chemoradtx	POST-op Chemoradtx	P value
5-yr Local recurrence	6%	13%	0.006
5-yr Overall survival	76%	74%	0.8
Sphincter-preservation surgery	39%	19%	0.004
Toxicity profile- acute	27%	40%	0.001
Toxicity profile – long-term	14%	24%	0.01

German Rectal Trial at 11 yrs now

Preoperative Versus Postoperative Chemoradiotherapy for Locally Advanced Rectal Cancer: Results of the German CAO/ARO/AIO-94 Randomized Phase III Trial After a Median Follow-Up of 11 Years

Rolf Sauer, Torsten Liersch, Susanne Merkel, Rainer Fietkau, Werner Hohenberger, Clemens Hess, Heinz Becker, Hans-Rudolf Raab, Marie-Therese Villanueva, Helmut Witzigmann, Christian Wittekind, Tim Beissbarth, and Claus Rödel

See accompanying editorial on page 1901; listen to the podcast by Dr Hong at www.jco.org/podcasts

Sauer et al. JCO 2012

Sauer et al. N Engl J Med 2004

Sauer et al. JCO 2012

Fig 3. Cumulative incidence of local recurrences after macroscopically complete local tumor resection in the intention-to-treat population (A) and according to treatment received (B). CRT, chemoradiotherapy; preop, preoperative; postop, postoperative.

Sauer et al. N Engl J Med 2004

Sauer et al. JCO 2012

Timing of Chemoradtx

Neoadjuvant Chemoradiation is the preferred option

MORE Questions

In Neoadjuvant setting

What about

* Radtx alone vs Chemoradtx?

EORTC 22921

- * Resectable T3-T4 Tumour
- * Pre-op radtx 45 Gy
- * Pre-op 5-FU bolus on wk1 &wk5
- * Primary End Point = OS

Bosset et al. N Engl J Med 2006

EORTC - results

or Preoperative Chemoradiotherapy (Panel A) and Overall Survival According to Postoperative Treatment or No Postoperative Treatment (Panel B).

Bosset et al. N Engl J Med 2006

EORTC - results

Figure 4. Cumulative Incidence of Local Recurrence as a First Event.

The cumulative incidence of local recurrence as a first event at 5 years was 17.1% in the preoperative-radiotherapy group, 8.7% in the preoperative-chemoradiotherapy group, 9.6% in the group receiving preoperative radiotherapy and postoperative chemotherapy, and 7.6% in the group receiving preoperative chemoradiotherapy and postoperative chemotherapy.

Bosset et al. N Engl J Med 2006

FFCD 92-03

EORTC 22921 and FFCD 92-03

Gerard et al. JCO 2006

Gerard et al. JCO 2006

conclusion from EORTC & FFCD

- * Preop-radiotherapy alone had higher local recurrence rate, however not affecting the overall survival.
- Addition of Chemotherapy confers significant benefit in local control
- * critisism
 - * only 36% receive TME,
 - * Bolus 5FU

More, MORE Questions!

Now that we established that

neoadjuvant chemoradtx is necessary and beneficial,

What About The use of Capecitabine? The addition of Oxaliplatin?

Capecitabine / infusional 5 FU

NSABP-R-04: P3 Randomized Study in US 1608 pt w Clinical S2/3 Rectal Ca , undergoing pre-op Radtx (45Gy + boost) + 1)Continuous infusion 5-FU 2)Continuous infusion 5-FU+ oxaliplatin 3)Capecitabine (825mg/m2 BD 5 days/wk) 4)Capecitabine + Oxaliplatin (50mg/m2/wk x 5)

Primary End point: pCR, SSS, surgical downstaging

Roh et al. ASCO, 2011

Interim Results

Endpoint	5-FU (± OX)	CAPE (± OX)	P value
pCR	135/719 = <mark>18.8%</mark>	157/707 = 22.2%	0.12
SSS	445/727 = 61.2%	445/710 = 62.7%	0.59
SD	39/188 = 20.7%	43/187 = 23.0%	0.62
Grade 3/4 diarrhea	70/625 = 11.2%	68/628 = 10.8%	0.86
Endpoint (FU or CAPE) No OX	FU or CAPE) + OX	P value
pCR	111/580 = 19.1%	121/578 = 20.9%	0.46
SSS	370/582 = 63.6%	353/584 = 60.4%	0.28
SD	35/152 = 23.0%	29/151 = 19.2%	0.48
Grade 3/4 diarrhea	41/622 = 6.6%	97/631 = 15.4%	< 0.0001

Abstract presentation from the 2011 ASCO Annual Meeting

- * NO Sig Difference btw 5FU vs CAPE regimen
- * No Sig Difference btw regimens with or without OX
- * Increase G3/4 toxicity w Ox

Roh et al. ASCO, 2011

Capecitabine / infusional 5 FU-2

Hofheinz et al

- Non-inferiority P3 study of 401 pt w S2,S3 Rectal Ca, all pt receive pre-op radtx +
 - * 2 arm (CAPE vs 5 FU)
 - * 2 Strata (Neoadjuvant vs adjuvant)
- * Primary End point : OS
- * 2nd End points : DFS and safety

Hofheinz et al. ASCO, 2011

Hofheinz et al - result

© ASCO Meeting Presentation 2011

© ASCO Meeting Presentation 2011

- * CAPE not inferior to 5FU regimen in 5 yrOS
- * Significant difference in 3 yr DFS, favouring CAPE
- * Neoadjuvant better tolerated + improve nodal downstaging

Hofheinz et al. ASCO, 2011

NSABP-R-04 + Hofheinz et al

- * capecitabine = CVI 5FU in preop CRT
- * The addition of oxaliplatin <u>DID NOT</u> improve preliminary outcomes but added significant toxicities
- Mature data to follow

Roh et al. ASCO, 2011 Hofheinz et al. ASCO, 2011

Finally In S2, S3 Rectal Cancer

- * Surgery : TME is SOC
- * In Neoadjuvant setting :
 - * Pre- op > Post-op Chemoradiation therapy
 - * CAPE = 5FU regimen
 - * Addition of Oxaliplatin increase toxicity

Thank you

Additional Slides

Adjuvant Chemotherapy

Derived From :

MOSAIC study

- * P3 study in Europe
- * 2246 pt w S2, S3 Colon Ca
- * FL +/- Oxaliplatin for 6 mth
- * De Gramont Regimen
- * 1' end point was DFS

NSABP C-07

- * P3 study in US
- * 2407 Pt w S2, S3 Colon Ca
- * FL +/- Oxaliplatin for 6 mth
- * Roswell-Park Regimen
- * 1' end point was DFS

Kuebler et al. JCO 2007

chemotherapy

- Significant DFS at 3 yrs (77.8% vs. 72.9%; P = .01) in favour of FOLFOX4
- * No significant difference in OS

Andre et al. N Engl J Med 2004

Fig 2. Kaplan-Meier estimates of disease-free survival by treatment. FLOX, fluorouracil, leucovorin, and oxaliplatin; FULV, fluorouracil and leucovorin.

- Significant DFS at 4 yrs (73.2% vs. 67%; P = <.004) in favour of FLOX
- * No significant difference in OS

Kuebler et al. JCO 2007

Adjuvant Chemotherapy

* Current Gold-standard adjuvant chemotherapy schedule is extrapolated from Colon Ca Trial

Oxaliplatin-based Chemotherapy

MOSAIC vs NSABP-C07

MOSAIC – De Gramont Regimen

- FOLFOX 4: 2 hr 200 mg/m2 leucovorin, bolus 5FU 400mg/m2 then 22hr 600mg/m2 5 FU on 2 consecutive days every 14 days for 12 cycle
- * +/- 2 hr oxaliplatin 85mg/m2

NSABP-C-07 – Roswell Park Regimen

- FLOX : 2 hr leucovorin 500mg/m2, bolus 5FU 500mg/m2
 D1,8,15,22,29, 36 then 2 wk rest period
- * +/- 2 hr oxaliplatin 85mg/m2 on D1, 15,29 of 8 wk cycle

Figure 22: Cancers of the colon, rectum and anus (ICD-10 C18-C21), Australia, males

Figure 21: Cancers of the colon, rectum and anus (ICD-10 C18-C21), Australia, females